Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings
نویسندگان
چکیده
State of the art statistical estimators for high-dimensional problems take the form of regularized, and hence non-smooth, convex programs. A key facet of these statistical estimation problems is that these are typically not strongly convex under a high-dimensional sampling regime when the Hessian matrix becomes rankdeficient. Under vanilla convexity however, proximal optimization methods attain only a sublinear rate. In this paper, we investigate a novel variant of strong convexity, which we call Constant Nullspace Strong Convexity (CNSC), where we require that the objective function be strongly convex only over a constant subspace. As we show, the CNSC condition is naturally satisfied by high-dimensional statistical estimators. We then analyze the behavior of proximal methods under this CNSC condition: we show global linear convergence of Proximal Gradient and local quadratic convergence of Proximal Newton Method, when the regularization function comprising the statistical estimator is decomposable. We corroborate our theory via numerical experiments, and show a qualitative difference in the convergence rates of the proximal algorithms when the loss function does satisfy the CNSC condition.
منابع مشابه
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-\L{}ojasiewicz Condition
In 1963, Polyak proposed a simple condition that is sufficient to show a global linear convergence rate for gradient descent. This condition is a special case of the Lojasiewicz inequality proposed in the same year, and it does not require strong convexity (or even convexity). In this work, we show that this much-older PolyakLojasiewicz (PL) inequality is actually weaker than the main condition...
متن کاملLinear Convergence of Proximal-Gradient Methods under the Polyak-Łojasiewicz Condition
In 1963, Polyak proposed a simple condition that is sufficient to show that gradient descent has a global linear convergence rate. This condition is a special case of the Łojasiewicz inequality proposed in the same year, and it does not require strong-convexity (or even convexity). In this work, we show that this much-older Polyak-Łojasiewicz (PL) inequality is actually weaker than the four mai...
متن کاملIncremental Aggregated Proximal and Augmented Lagrangian Algorithms
We consider minimization of the sum of a large number of convex functions, and we propose an incremental aggregated version of the proximal algorithm, which bears similarity to the incremental aggregated gradient and subgradient methods that have received a lot of recent attention. Under cost function differentiability and strong convexity assumptions, we show linear convergence for a sufficien...
متن کاملAn Adaptive Accelerated Proximal Gradient Method and its Homotopy Continuation for Sparse Optimization
We first propose an adaptive accelerated proximal gradient (APG) method for minimizing strongly convex composite functions with unknown convexity parameters. This method incorporates a restarting scheme to automatically estimate the strong convexity parameter and achieves a nearly optimal iteration complexity. Then we consider the l1regularized least-squares (l1-LS) problem in the high-dimensio...
متن کاملOn Uniform Convexity, Total Convexity and Convergence of the Proximal Point and Outer Bregman Projection Algorithms in Banach Spaces
In this paper we study and compare the notions of uniform convexity of functions at a point and on bounded sets with the notions of total convexity at a point and sequential consistency of functions, respectively. We establish connections between these concepts of strict convexity in infinite dimensional settings and use the connections in order to obtain improved convergence results concerning...
متن کامل